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Background 

• What do we refer to as traffic classification? 

– Identifying the application that generated each flow 

 

• What is traffic classification used for? 

– Network planning and dimensioning 

– Per-application performance evaluation 

– Traffic steering / QoS / SLA validation 

– Charging and billing 
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Background: Ports 
• Port-based 

– Computationally lightweight 
– Payloads not needed 
– Easy to understand and program 
– Low accuracy / completeness (but most NetFlow products still use it!) 
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Background: DPI 
• Deep packet inspection (DPI) 

– High accuracy and completeness 
– Computationally expensive 
– Needs payload access 
– Privacy concerns 
– Cannot work with encrypted traffic 
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Background: ML 

• Machine Learning 
– High accuracy and completeness 
– Computationally viable 
– Payloads not needed 
– Can work with encrypted traffic 
– Needs frequent retraining 
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Main limitations of ML-TC 

• Introduction in real products and operational 
environments is limited and slow 
– Current proposals suffer from practical problems 

– Actual products rely on simpler methods or DPI 

 

• 3 main real-world challenges: 
1) The deployment problem 

2) The maintenance problem 

3) The validation problem 
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1) Deployment problem 

• Current solutions are difficult to deploy 

– Need dedicated hardware appliances / probes 

– Need packet-level access (e.g. compute features, …) 

 

• How to address this problem? 

– Work with flow level data (e.g. Netflow / IPFIX) 

– Support packet sampling (e.g. Sampled Netflow) 
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NetFlow w/o sampling 

• Challenge: NetFlow v5 features are very limited 

– IPs, ports, protocol, TCP flags, duration, #pkts, … 
 

• State-of-the-art ML technique: C4.5 decision tree 
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Results (NetFlow w/o sampling) 

• UPC dataset: Real traffic from university access link 
– 7 x 15 min traces (collected at different days / hours) 
– Labelled with L7-filter (strict version with less FPR) 
– Public data set available at: 

https://cba.upc.edu/monitoring/traffic-classification 
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Results (Sampled NetFlow) 

• Impact of packet sampling 
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Sources of inaccuracy 

1) Error in the 
estimation of 
the traffic 
features 

2) Changes in flow size distribution 3) Changes in flow splitting probability 
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Solution (Sampled NetFlow) 

 

V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, J. Solé-Pareta. Analysis of the impact of sampling on 
NetFlow traffic classification. Computer Networks, 55(5), 2011. 
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2) Maintenance problem 

• Difficult to keep classification model updated 

– Traffic changes, application updates, new applications 

– Involve significant human intervention 

– ML models need to be frequently retrained 

 

• Possible solution to the problem 

– Make retraining automatic 

– Computationally viable 

– Without human intervention 
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Autonomic Traffic Classification 

• Lightweight DPI for retraining 

– Small traffic sample (e.g. 1/10000 flow sampling) 
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Results 
• 14-days trace collected at the Anella Científica (Catalan 

RREN) managed by CSUC (www.csuc.cat) 

V. Carela-Español, P. Barlet-Ros, O. Mula-Valls, J. Solé-Pareta.  An autonomic traffic classification system for 
network operation and management. Journal of Network and Systems Management, 23(3):401-419, 2015. 
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3) Validation problem 

• Current proposals are difficult to validate, 
compare and reproduce 

– Private datasets 

– Different ground-truth generators 
 

• Our contribution 

– Publication of labeled datasets (with payloads) 

– Common benchmark to validate/compare/reproduce 

– Validation of common ground-truth generators 
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Methodology 

• Manually generate representative traffic 
– Create fake accounts (e.g. Gmail, Facebook, Twitter) 
– Interact with the service simulating human behavior 

(e.g. posting, gaming, watching videos, skype calls …) 
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Data set 

• Public labeled data set with full payloads 

– Accurate: VBS (label from the application socket) 

– Avoids privacy issues: Realistic “artificial” traffic 

– Limitations: Traffic mix might not be representative 
 

• Data set is publicly available at: 
– http://www.cba.upc.edu/monitoring/traffic-classification 

– Shared with 200+ researchers over the world 

– Cited in 100+ scientific articles (source: Google Scholar) 
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Data set 

• > 750K flows, ~55 GB of data 

• 17 application protocols 
– DNS, HTTP, SMTP, IMAP, POP3, SSH, NTP, RTMP, …  

• 25 applications 
– Bittorrent, Dropbox, Skype, Spotify, WoW, … 

• 34 web services 
– Youtube, Facebook, Twitter, LinkedIn, Ebay, … 

 

 
T. Bujlow, V. Carela-Español, P. Barlet-Ros. Independent comparison of popular DPI tools for traffic classification. 
Computer Networks, 76:75-89, 2015. 
V. Carela-Español, T. Bujlow, P. Barlet-Ros. Is our ground-truth for traffic classification reliable? In Proc. of Passive 
and Active Measurement Conf. (PAM), 2014. 
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DPI tools compared 
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Results: Application protocols 

• Most tools achieve 70%-100% accuracy 
 

• nDPI and Libprotoident showed highest 
completeness (15/17) 

 

• Only Libprotoident identified encrypted 
protocols (e.g., IMAP TLS, POP TLS, SMTP TLS) 

 

• L7-filter suffered from false positives (9/17) 
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Results: Applications 

• 20-30% less accuracy compared to protocols 
 

• PACE (20/22) and nDPI (17/22) obtained highest 
completeness 

 

• Libprotoident showed reasonable acc. (14/22) 
– Note it only uses 4 bytes of the payload 

 

• NBAR showed very low performance (4/22) 
– Unable to classify most applications 
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Results: Web services 

• PACE: 16/34 (6 over 80%) 

• nDPI: 10/34 (6 over 80%) 

• OpenDPI: 2/34 

• Libprotoident: 0/34 

• L7-filter: 0/44 (high FPR) 

• NBAR: 0/34 
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Implications for operators 

• Current DPI products are expensive and 
difficult to deploy 

 

• Accurate traffic classification with Sampled 
NetFlow is possible and easy to deploy 

 

• Sampled NetFlow traffic volumes are low 

– Flows can be easily sent (encrypted) to the cloud 

– Monitoring can be offered as a service (SaaS) 
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Real implementation 

• Received funding from EU H2020 to convert 
technology into a commercial product 

–  SME Instrument Phase 2 project 

–  Grant agreement No. 726763 

 

• Talaia Networks, S.L. (www.talaia.io) 

– Spin-off of UPC Barcelona-Tech 

– Monitoring and security service (SaaS and on-prem) 

– Customers worldwide (operators, ISPs, cloud prov., …) 
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On-Line Demo 

https://www.talaia.io 
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