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Background

 What do we refer to as traffic classification?
— |dentifying the application that generated each flow

e What is traffic classification used for?

— Network planning and dimensioning

— Per-application performance evaluation
— Traffic steering / QoS / SLA validation
— Charging and billing




Background: Ports

* Port-based
— Computationally lightweight
— Payloads not needed
— Easyto understand and program
— Low accuracy / completeness (but most NetFlow products still use it!)
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Background: DPI

* Deep packet inspection (DPI)
— High accuracy and completeness
— Computationally expensive
— Needs payload access
— Privacy concerns
— Cannot work with encrypted traffic

TCP
Header GET /song.mp3 HTTP/1.1\r\nUser-Agent:
(Port 80)
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Background: ML

* Machine Learning
— High accuracy and completeness
— Computationally viable
— Payloads not needed
— Can work with encrypted traffic
— Needs frequent retraining
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Main limitations of MIL-TC

* |ntroduction in real products and operational
environments is limited and slow

— Current proposals suffer from practical problems
— Actual products rely on simpler methods or DPI

* 3 main real-world challenges:
1) The deployment problem
2) The maintenance problem
3) The validation problem




1) Deployment problem

e Current solutions are difficult to deploy
— Need dedicated hardware appliances / probes
— Need packet-level access (e.g. compute features, ...)

* How to address this problem?

— Work with flow level data (e.g. Netflow / IPFIX)
— Support packet sampling (e.g. Sampled Netflow)




NetFlow w/o sampling

e Challenge: NetFlow v5 features are very limited
— |Ps, ports, protocol, TCP flags, duration, #pkts, ...

e State-of-the-art ML technique: C4.5 decision tree
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Results (NetFlow w/o sampling)

 UPC dataset: Real traffic from university access link
— 7 x 15 min traces (collected at different days / hours)
— Labelled with L7-filter (strict version with less FPR)

— Public data set available at:
https://cba.upc.edu/monitoring/traffic-classification

Overall accuracy
Name C4.5 Port-based®
Flows Packets Bytes Flows

UPC-I | 89.17% | 66.37% | 56.53% 11.05%
UPC-Il | 93.67% | 82.04% | 77.97% 11.68%
UPC-IIl | 90.77% | 67.78% | 61.80% 9.18%
UPC-IV | 91.12% | 72.58% | 63.69% 9.84%
UPC-V | 89.72% | 70.21% | 61.21% 6.49%
UPC-VI | 88.89% | 68.48% | 60.08% 16.98%
UPC-VII | 90.75% | 61.37% | 40.93% 3.55%
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Results (Sampled NetFlow)

* |mpact of packet sampling
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Sources of inaccuracy
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Solution (Sampled NetFlow)
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V. Carela-Espafiol, P. Barlet-Ros, A. Cabellos-Aparicio, J. Solé-Pareta. Analysis of the impact of sampling on
NetFlow traffic classification. Computer Networks, 55(5), 2011.




2) Maintenance problem

» Difficult to keep classification model updated
— Traffic changes, application updates, new applications
— Involve significant human intervention
— ML models need to be frequently retrained

* Possible solution to the problem
— Make retraining automatic
— Computationally viable

— Without human intervention




Autonomic Traffic Classification

* Lightweight DPI for retraining
— Small traffic sample (e.g. 1/10000 flow sampling)
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Results

e 14-days trace collected at the Anella Cientifica (Catalan
RREN) managed by CSUC (www.csuc.cat)
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V. Carela-Espafiol, P. Barlet-Ros, O. Mula-Valls, J. Solé-Pareta. An autonomic traffic classification system for
network operation and management. Journal of Network and Systems Management, 23(3):401-419, 2015.



http://www.csuc.cat/

3) Validation problem

* Current proposals are difficult to validate,
compare and reproduce

— Private datasets
— Different ground-truth generators

e Qur contribution

— Publication of labeled datasets (with payloads)
— Common benchmark to validate/compare/reproduce

— Validation of common ground-truth generators




Methodology

VBS client installed

VBS client installed VBS Server installed,
. MySQL Server to collect
- all the data sent by clients

Lubuntu

VBS client installed

 Manually generate representative traffic

— Create fake accounts (e.g. Gmail, Facebook, Twitter)

— Interact with the service simulating human behavior
(e.g. posting, gaming, watching videos, skype calls ...)




Data set

* Public labeled data set with full payloads

— Accurate: VBS (label from the application socket)
— Avoids privacy issues: Realistic “artificial” traffic
— Limitations: Traffic mix might not be representative

e Data set is publicly available at:

— http://www.cba.upc.edu/monitoring/traffic-classification

— Shared with 200+ researchers over the world

— Cited in 100+ scientific articles (source: Google Scholar)
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Data set

e > 750K flows, ~55 GB of data
e 17 application protocols
— DNS, HTTP, SMTP, IMAP, POP3, SSH, NTP, RTMP, ...
e 25 applications
— Bittorrent, Dropbox, Skype, Spotify, WoW, ...
* 34 web services
— Youtube, Facebook, Twitter, LinkedIn, Ebay, ...

T. Bujlow, V. Carela-Espafiol, P. Barlet-Ros. Independent comparison of popular DPI tools for traffic classification.
Computer Networks, 76:75-89, 2015.

V. Carela-Espafiol, T. Bujlow, P. Barlet-Ros. Is our ground-truth for traffic classification reliable? In Proc. of Passive
and Active Measurement Conf. (PAM), 2014.




DPI tools compared

Table 1: DPI tools included in our comparison

Name Version Released Apps. identified
PACE 1.47.2 November 2013 1000
OpenDPI 1.3.0 June 2011 100
nDPI rev. 7543 April 2014 170
L7-filter 2009.05.28  May 2009 110
Libprotoident ~ 2.0.7 November 2013 250
NBAR 15.2(4)M2  November 2012 85




Results: Application protocols

Most tools achieve 70%-100% accuracy

nDPIl and Libprotoident showed highest
completeness (15/17)

Only Libprotoident identified encrypted
protocols (e.g., IMAP TLS, POP TLS, SMTP TLS)

L7-filter suffered from false positives (9/17)




Results: Applications

20-30% less accuracy compared to protocols

PACE (20/22) and nDPI(17/22) obtained highest
completeness

Libprotoident showed reasonable acc. (14/22)
— Note it only uses 4 bytes of the payload

NBAR showed very low performance (4/22)
— Unable to classify most applications




Results: Web services

 PACE: 16/34 (6 over 80%)
 nDPI: 10/34 (6 over 80%)
* OpenDPI: 2/34

* Libprotoident: 0/34

o L7-filter: 0/44 (high FPR)

* NBAR:0/34




Implications for operators

e Current DPI products are expensive and
difficult to deploy

e Accurate traffic classification with Sampled
NetFlow is possible and easy to deploy

 Sampled NetFlow traffic volumes are low

— Flows can be easily sent (encrypted) to the cloud

— Monitoring can be offered as a service (SaaS)




Real implementation

* Received funding from EU H2020 to convert
technology into a commercial product

— SME Instrument Phase 2 project
— Grant agreement No. 726763

e Talaia Networks, S.L. (www.talaia.io) ﬂTaIaia
— Spin-off of UPC Barcelona-Tech

— Monitoring and security service (SaaS and on-prem)

— Customers worldwide (operators, ISPs, cloud prov.,, ...)



http://www.talaia.io/
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