Data sources for BGP filtering

Job Snijders, RIPE 76

job@ntt.net
What is this about

- Relevance of routing security
- How IRRs work around the world
- Proposed future work
- Time for questions!
BGP Hijacking is lucrative
Amazon Route53 / MyEtherWallet.com hijack

<table>
<thead>
<tr>
<th>Auth Nameserver</th>
<th>Original</th>
<th>Hijacked</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.251.192.73 ns-73.awsdns-09.com</td>
<td>205.251.192.0/23 AS 16509</td>
<td>205.251.192.0/24 AS 10297</td>
</tr>
<tr>
<td>205.251.195.239 ns-1007.awsdns-61.net</td>
<td>205.251.194.0/23 AS 16509</td>
<td>205.251.195.0/24 AS 10297</td>
</tr>
<tr>
<td>205.251.197.218 ns-1498.awsdns-59.org</td>
<td>205.251.196.0/23 AS 16509</td>
<td>205.251.197.0/24 AS 10297</td>
</tr>
<tr>
<td>205.251.199.201 ns-1993.awsdns-57.co.uk</td>
<td>205.251.198.0/23 AS 16509</td>
<td>205.251.199.0/24 AS 10297</td>
</tr>
</tbody>
</table>
It could’ve been worse!

- The AS 10297 upstreams (NTT, Cogent, Level3) & Equinix route server blocked the hijack attack
- Some peers of AS 10297 (Google, Hurricane Electric, BBOI, others) accepted the hijack
- Hijack impact was limited thanks to filters, but still an absolute disaster for all involved
3 reasons to filter

• Creating filters based on public data, forces malicious actors to leave a trial in IRR, WHOIS or other data sources: **auditability**

• **Bugs happen:** your router may suddenly ignore parts of your configuration, you’ll then rely on your BGP peer’s filters

• **Everyone makes mistakes** – a typo is easily made
Filtering recap

1. Reject RFC 1918 (private) IP space
2. Reject majority of Bogon/Private ASNs
3. Reject IXP Nets
4. Reject based on “Peerlock” rules
5. **Allow what is registered in IRR, WHOIS, and RPKI**
6. Reject the rest
What is the IRR

• “Internet Routing Registry”
• What many operators uses as a source to generate per customer prefix filters
• Publicly available, to help debugging and provide transparency
• By making our source for filter generation publicly available, other parties can inspect what we take into consideration.
What sources are there?

- IRR Sources offered by Regional Internet Registries (RIPE, APNIC, ARIN, etc)
- IRR Sources operated by “third parties” (like RADB, NTT, ALTDB, etc)
- WHOIS sources (ARIN-WHOIS, Registro.BR)
- RPKI

- The sources are NOT equal, some operate by different rules than others
A route object: the atom

$ whois -h rr.ntt.net 192.147.168.0/24

route: 192.147.168.0/24
descr: Job Snijders
origin: AS15562
notify: job@instituut.net
mnt-by: MAINT-JOB
changed: job@ntt.net 20161003
source: NTTCOM

(only the bold lines are relevant in the process)
Generating a prefix filter

job@vurt ~$ whois -h rr.ntt.net '!gAS15562'
A212
165.254.255.132/32 165.254.255.26/32
165.254.255.0/25 165.254.255.144/28
165.254.255.133/32 192.147.168.0/24
165.254.255.160/28 165.254.255.149/32
209.24.0.0/16 204.42.254.192/26
165.254.255.0/24 67.221.245.0/24
C
job@vurt ~$
Same example, with bgpq3

```bash
job@vurt ~$ bgpq3 -h rr.ntt.net -l AS15562-in AS15562
no ip prefix-list AS15562-in
ip prefix-list AS15562-in permit 67.221.245.0/24
ip prefix-list AS15562-in permit 165.254.255.0/24
ip prefix-list AS15562-in permit 165.254.255.0/26
ip prefix-list AS15562-in permit 165.254.255.26/32
ip prefix-list AS15562-in permit 165.254.255.64/26
ip prefix-list AS15562-in permit 165.254.255.132/32
ip prefix-list AS15562-in permit 165.254.255.133/32
ip prefix-list AS15562-in permit 165.254.255.144/28
ip prefix-list AS15562-in permit 165.254.255.149/32
ip prefix-list AS15562-in permit 165.254.255.160/28
ip prefix-list AS15562-in permit 192.147.168.0/24
ip prefix-list AS15562-in permit 204.2.30.0/23
ip prefix-list AS15562-in permit 204.42.254.192/26
ip prefix-list AS15562-in permit 209.24.0.0/16
```
Grouping ASNs: AS-SETs

job@vurt ~$ whois -h rr.ntt.net AS15562:AS-SNIJDERS

as-set: AS15562:AS-SNIJDERS
members: AS15562 # Me
members: AS57436 # Samer
members: AS-KING # Thomas King
members: AS-NETHER # Jared
tech-c: DUMY-RIPE
admin-c: DUMY-RIPE
notify: job@instituut.net
org: ORG-SNIJ1-RIPE
mnt-by: SNIJDERS-MNT
created: 2018-01-16T17:54:54Z
last-modified: 2018-01-16T17:58:36Z
source: RIPE
Systematic access to AS-SETS

$ whois -h rr.ntt.net '!iAS15562:AS-SNIJDERS,1'
A130
AS15562 AS202539 AS205591 AS205593 AS206479
AS206499 AS206551 AS234 AS267 AS31451 AS41731
AS49697 AS51861 AS57436 AS60003 AS61438
C
Wrapping it up:

- An AS-SET is resolved into all its member ASNs
- For each ASN we do a reverse lookup to find all route-objects where the ASN is the “origin:”
How one IRR source is unlike the other..

• Not all IRRs are equal
• They differ in terms of ownership, purpose, policy, validation
• All of IRR is “garbage in, garbage out”
• Some RIRs offer good training materials on how to use the IRR
• Some IRRs have fancy web interfaces, some require interaction via email
Differences #1

- In NTTCOM, any customer can create any route object for any prefix (if it hasn’t been covered by another route object in NTTCOM).
- In RADB anyone that pays $500 per year can create any route object for any prefix (if it hasn’t been covered by another route object in RADB).
Differences #2

• In ARIN, any ARIN member can create any route object for any prefix (if it hasn’t been covered by another route object in ARIN)

• In ARIN WHOIS, only the owner of the IP block can specify an Origin AS
Differences #3

• In RIPE, only the owner of the IP block can create/designate route objects. Except when it isn’t RIPE managed space… then anyone can create any route object for any prefix (if it hasn’t been covered by another route object in RIPE)

• In the future RIPE will show the difference between route-objects for which it is authoritative and which ones it isn’t by showing: “source: RIPE” and “source: RIPE-NONAUTH”
Differences #4

- In the RIPE database, when you create route objects, both the IP block owner and the owner of the Origin ASN have to approve it. So double authentication is required.
- This is going to change in 2018, only the IP owner has to approve: aligns with APNIC, others
Differences #5

• In the APNIC and AfriNIC database you can only create route-objects for APNIC/AfriNIC managed space **AND** with approval from the IP block owner, and no approval from the ASN owner.

• This is the most sane approach, cleanest data
Summary: what the F***
What is this ARIN WHOIS thing?

- Remember from the fifth slide that we **only** care about the CIDR + Origin AS tuple?
Using ARIN WHOIS

- It is a trustworthy authoritative source of data
- We download a 3.5GB XML dump from ARIN once a day
- We convert the XML into “route:” objects
- We load those IRR objects into rr.ntt.net
- This is to offer customers easier choices
 - Setting up IRR can be cumbersome
Example output

```
$ whois -h rr.ntt.net 199.43.0.44
route:      199.43.0.0/24
descr:      NET-199-43-0-0-1
origin:     AS10745
remarks:    This route object represents authoritative
data retrieved from ARIN's WHOIS service.
remarks:    The original data can be found here:
            https://whois.arin.net/rest/net/NET-199-43-0-0-1
remarks:    This route object is the result of an
            automated WHOIS-to-IRR conversion process.
mnt-by:     MAINT-JOB
changed:    job@ntt.net 20150715
source:     ARIN-WHOIS
```
More WHOIS: Registro.br

job@vurt ~$ whois -h registro.br 200.160.4.6 | grep -A 1 inetnum
inetnum: 200.160.0/20
aut-num: AS22548

job@vurt ~$ grep AS22548 nicbr-asn-blk-latest.txt
AS22548|Núcleo de Inf. e Coord. do Ponto BR - NIC.BR|05.506.560/0001-36|200.160.0.0/20|2001:12ff::/32

• Computer parseable Registro.br data dump:
 (Thank you Frederico Neves!)
• 56% of NICBR WHOIS entries exact match with BGP DFZ, quite accurate!
New use case for RPKI data?

Validated ROAs

Validated ROAs from APNIC from AFRINIC RPKI Root, APNIC from ARIN RPKI Root, APNIC from IANA RPKI Root, LACNIC RPKI Root, APNIC from RIPE RPKI Root, ARIN RPKI Root, AfriNIC RPKI Root, LACNIC RPKI Root, NCC Pilot (RRDP prefetch), RIPE NCC RPKI Root, RIPE NCC RPKI Root (RRDP prefetch), RIPE NCC prepdev (RRDP prefetch), altca, apnic-testbed.

<table>
<thead>
<tr>
<th>ASN</th>
<th>Prefix</th>
<th>Maximum Length</th>
<th>Trust Anchor</th>
</tr>
</thead>
<tbody>
<tr>
<td>15562</td>
<td>2001:67c:208c::/48</td>
<td>48</td>
<td>RIPE NCC RPKI Root</td>
</tr>
</tbody>
</table>
New use case for RPKI data?

- RPKI can be used for Origin Validation – but it has more uses!
- A RPKI ROA kind of looks like a route object:
 - A ROA has a “prefix” and an “origin”
 - Use can use RPKI ROAs for provisioning

RPKI is trustworthy data (better than IRR), we know for sure that the owner of the IP space created the ROA.
Simple example to convert RPKI ROA to prefix-list

```
job@vurt ~$ ftp -VM -o - \\
   http://localcert.ripe.net:8088/export.json | \\
   jq '.roas[] | select(.asn | contains("AS3333"))? | .prefix' \\
   | sort | uniq | grep -v ::

"193.0.0.0/21"
"193.0.10.0/23"
"193.0.12.0/23"
"193.0.18.0/23"
"193.0.20.0/23"
"193.0.22.0/23"
"193.0.24.0/22"
"193.0.24.0/24"
```
Use RPKI to “drown out” IRR?

• Perhaps… given that we now know some IRR sources are less than stellar…
 – … We could leverage RPKI data, to ignore rogue/stale/historic/wrong IRR route-objects?

• Maybe when a ROA exists… the ROA should suppress the output on IRRD query output?

• If there is an IRR route-object that conflicts with a RPKI ROA, maybe IRRd only return the ROA?
Using RPKI data: rtrsub

RTR Substitution

Add topics

63 commits
1 branch
22 releases
1 contributor
Todo list for the community

- Deploy/Fix outstanding IRR issues: RIPE, ARIN
- Increase RPKI’s reliability:
 - Certificate Transparency
 - Gain more operational experience!
 - Use RPKI data to “drown out” stale/rogue not-validated IRR data
- A new IRRd daemon from scratch: IRRdv4
 - https://github.com/irrdnet/irrd4
 - The future of IRRd is to be a routing data source policy engine (easy acces to WHOIS sources, and make RPKI a first class)
 - More news at RIPE77!
- Create an RPKI equivalent of AS-SETs
 - (come to the routing-wg for more news!)