
RIPE76 - Rebuilding a network data pipeline
Louis Poinsignon

Who am I

Louis Poinsignon

Network Engineer @ Cloudflare.

Building tools for data analysis and traffic engineering.

What is Cloudflare?

Content delivery network.
We are a DNS resolver.
We received Terabit/s attacks.

140+ PoP globally
170+ IXP presence

We monitor our network

● We are a CDN

○ We want to know an anomaly before the user notices
■ Alert and fix

○ We want to reduce transits costs
■ Way of serving the same bit for cheaper

○ We want to optimize our network
■ What are the main ISPs in a country
■ Better routes

Flows

Network samples

A flow sample contains metadata information:
source/destination IPs, interfaces, size of the payload, timestamp, ports, VLANs.

High cardinality ⇒ storage
Can aggregate to reduce size but losing information

High frequency ⇒ scalability
Depends on your sampling rate and total bandwidth

Building services ⇒ reliability

The need

Our existing pipeline was monolithic.

Good enough for one-off lookups.

Want to deploy new services
(automatic rerouting, periodic statistics)

Have a compression of data
(keep the maximum relevant)

recentold

Required
quantity of

information

aggregating
(minute)

aggregating
(day)

Current limitations

No monitoring, storage, only aggregations corrected during bug

nfdump:
Stores singles flows. Aggregation on query.
→ Machine with dump files.

nfacctd:
Configured aggregations. Connects to BGP. Plenty of outputs.
→ Only aggregation. Restart necessary.
→ Performances issues.

Why custom tools and pipeline? (1/2)

We want to use our internal cloud:
● Containers
● Load-balanced IPs
● Storage (clusters)
● Message brokers

No more single point of failure (the unique machine that ran
nfdump storing locally)

Increases reliability, accessibility and ease of
maintenance

KAFKA

Flow
Flow

Flow

Flow
Flow

Flow

Flow
Flow

Why custom tools and pipeline? (2/2)

Reliability for data analytics:
● Traffic engineering based on live data
● Parallel tasks
● Monitoring of the flows delivery and processing

○ We were losing flows due to CPU issue

Other teams may want to access the data:
● Common file format
● Using common databases and tools

Insertion in database is distributed,
rate is 1100 samples per second per

container

GoFlow

https://github.com/cloudflare/goflow

A NetFlow v9, IPFIX and sFlow decoder for network samples that pushes to Kafka and living in
containers

NetFlow/IPFIX

sFlow

Templates

sFlow sample

IPFIX sample

Goflow protobuf
sample

Packet header
BGP

Src/Dst IP, port
BGP

Src/Dst IP,
port, @mac

BGP

Goflow protobuf
sample

Src/Dst IP,
port, @mac

BGP

...

Kafka

The pipeline

Goflow protobuf
sample

Src/Dst IP,
port, @mac

BGP

Goflow protobuf
sample

Src/Dst IP,
port, @mac

BGP

...
Goflow protobuf

sample extended
Src/Dst IP,
port, @mac

BGP
Cloudflare plan

Countries

Flow-processor

...
Goflow protobuf

sample extended
Src/Dst IP,
port, @mac

BGP
Cloudflare plan

Countries

Add countries based on source/destination IPs
Add/correct BGP information using external source
Insert Cloudflare plan (free, pro, biz, enterprise…)

Raw feed pipeline Extended feed pipeline

+countries
+plan
+ASN

The pipeline

Goflow protobuf
sample extended

Src/Dst IP,
port, @mac

BGP
Cloudflare plan

Countries

Inserter in database

...
Goflow protobuf

sample extended
Src/Dst IP,
port, @mac

BGP
Cloudflare plan

Countries

Aggregators

Goflow protobuf
aggregated

Traffic per plan

...
Goflow protobuf

aggregated

Traffic per ASN

Inserter in database

Alerters

Aggregated feed pipelineExtended feed pipeline

Summing in parallel, by key,
reducing the number of
information.
Way of precomputing

New service

New service

Aggregation - MapReduce

AS65001
Bytes: 1
Packets: 1

Flow Flow Flow Flow

AS65001
Bytes: 1
Packets: 1

AS65002
Bytes: 1
Packets: 1

AS65001
Bytes: 1
Packets: 1

AS65001
Bytes: 2
Packets: 2

AS65002
Bytes: 1
Packets: 1

AS65001
Bytes: 1
Packets: 1

AS65001
Bytes: 3
Packets: 3

AS65002
Bytes: 1
Packets: 1

Step 1

Step 2

Step 3

Keying+rebalancingSumming

Summing

GoFlow - Who is it for?

If you want flexibility and integrate the network feed in a data pipeline.

You have to develop:
● Flow processors: 1:1 mappings of the flows (add country information, etc.)

● Database inserters: have a data warehouse (Clickhouse, Amazon RedShift, Google
BigQuery)

○ We visualize it in Grafana
○ Specific teams to maintain access to Clickhouse

● Aggregators: pre-compute (reduce size by summing on keys) and allows to have a live feed
○ We use Flink

Flow tools - Comparison

All-in-one software solutions:

[n|s]fdump:
Decode flow samples (sFlow, IPFIX, NetFlow) and store them into a file on the disk.
Can be replayed.
Aggregation done on the fly. Files can be splitted by router/time.

[n|s]facctd:
Aggregates on specific fields, add data (ASN, countries), can forward the result to Kafka, a
static file.

Flow tools - Comparison

Performances of GoFlow: on 2 CPU cores, around 20 000 flows packets per second.
Horizontal scalability possible. Only 30 microseconds for decoding.
Monitor using Prometheus.

Modulable:
Eg: Create your own producers to send to RabbitMQ or use other NetFlow fields.

What we built

DecodersRouters Processors

Clickhouse
(data warehouse)

Flink

Live
timeseries

Kafka

Results

API with statistics

Everything SQL query:
$ flowquery -s dstport/bytes -f 'dstip = "1.1.1.1" '
SELECT dstPort AS dstport,

count(*) AS numFlows,sum(packets*samplingRate) AS sumPkts,
sum(bytes*samplingRate*8) AS sumbits,
round(sum(packets*samplingRate/(86400*1000)),1) AS rateKpps,
round(sum(bytes*samplingRate*8/(86400*1000000)),2) AS rateMbps

FROM netflows
WHERE date <= toDate('2018-03-24 00:00:00')

AND timeFlow <= toDateTime('2018-03-24 23:59:59')
AND date >= toDate(018-03-24 23:59:59)
AND timeFlow >= toDateTime('2018-03-24 00:00:00)
AND (if(dstIpv4 != 0, IPv4NumToString(dstIpv4), IPv6NumToString(dstIpv6)) = '1.1.1.1')

GROUP BY dstport
ORDER BY sumbits DESC
LIMIT 10

 dstport numFlows sumPkts sumbits rateKpps rateMbps
 0 443 2737526 46040068748 28191173342848 533 326
 1 80 422707 7467889690 8388815951552 86 97
 2 8000 433446 7297589502 6969577261264 84 81
 3 514 110813 4863679280 6564511089008 56 76

Results

Uses:
Prediction of network traffic and anomaly detection
Finding the best maintenance times per datacenter/timezone
Market share of every ISP per country
Global IPv6 percentages
Transit vs peering reports Outliers

Local variance following median

Correlation coefficient

BGP

BGP collection

To add more information to the flow pipeline (prefix → ASN api).

Built a custom collector for our 140+ datacenters
https://blog.cloudflare.com/durban-and-port-louis/

Full tables: 740 000 routes * 140

BGP collection

Main issue:
● BGP collectors require a static IP, static configuration

○ One fixed machine that would stores the 60+ millions routes

Solved:
● Developed a custom BGP server that only listens and accept connections then forwards

updates in Kafka.
○ Removes problem of backpressure
○ Especially when generating full tables dumps

● Dedicated Docker containers for storing the full table and provide an API

Failure handling (avoid resetting all sessions or losing all routes at once)

BGP pipeline - Failover

10.1.1.1

Routers Load-balanced IP Collectors

x x Machine crash

Instant automatic rebalancing

No impact

Backpressure, scale problems

Asynchronous receive and processing

Overflowing pipe

X
X
X
X
X

Update A

Update B

Update C

Update D

Update E

Update F

Update G

Update H

Add routine

Merge routine

MRT table dump containing A and B

time

MRT table dump containing A, B and H (missing D, E, F, G)

What we built

DecodersRouters

Clickhouse
(data warehouse)

Live
looking-glass

Kafka

MRT Updates

Collectors

Archivers
(5m dumps)

Archivers
(8h tables)

Results

Live APIs.
Storage on S3-type-cluster (for static table analysis or update-processing)
Provide Prefix → ASN information for the flow processing
Ideas for storing MP-BGP EVPN routes (mac addresses).

300 MB per full-table (total storage is around 40 GB in RAM over a dozen machines).
Development of a custom level-compressed trie in Go for storage

Distributed lookups: 1 millisecond
for a route over 140+ routers
(70 million routes).

Random fact

● People sending us IX LAN prefixes

● Receiving smaller than /48 IPv6 and smaller than /24 IPv4

● Longest AS-Path
○ 2402:8100:3980::/42 → 37 ASNs

The converter using 30GB of
RAM and 20 CPU for an hour

Results

Archivers
(5m dumps)

Archivers
(8h tables)

MRT → CSV

"prefix","asn"
"8.8.8.0/24","15169"
“1.1.1.0/24”,”13335”
“9.9.9.0/24”,”19281” Clickhouse

(dictionnary)

prefixes.csv
(easier to work with)

CSV → MMDB Flow-processor

Binary optimized file
(many existing
libraries, trie = fast)

Up to date
information when
getting new prefixes

The BGP library

https://github.com/cloudflare/fgbgp

Features:
● Open/maintain/accept BGP connection
● Decode/encode BGP messages
● Decode/encode MRT updates or Table Dumps
● Maintain a RIB
● Event-driven API

You implement the behavior.
It is not an automatable client.

More to come

Coming soon. More code examples, docker-compose, inserters.

One last tool:
https://github.com/cloudflare/py-mmdb-encoder

Create your own mmdb files using Python (IP to country, IP to ASN, IP to anything).

Questions?

Thank you
louis@cloudflare.com

@lspgn
traceroute6 cv6.poinsignon.org

