
INFRASTRUCTURE



TTLd

Louis Plissonneau louisp@fb.com
Production Engineer (Network)



Pre-requisite:
• Completely own all your infrastructure

TTLd
Total TCP Loss detection (aka fancy acronym)



Own your 
datacenter



Own your 
racks



Own your 
hosts



Own your 
network



Goal:
• Surface End to End TCP retransmit throughout the 

network
• Use all production packets as probes

TTLd
Total TCP Loss detection (aka fancy acronym)



What if every packet was a probe?
• Precise end to end performance metric for TCP 
• Probes are following production traffic (ECMP…)
• Measuring at any network device gives us E2E 

performance 



Network Monitoring



Why “passive” monitoring is not enough?

• SNMP: Trusting network devices…

• Host TCP retransmit: Packet loss, everywhere…



Why “active” monitoring is not enough?
• Injecting packets in the network
• detect service/customer impacting loss 
• triangulate loss to a device/interface

• Limitations
• Potentially all injected packets could be dropped without 

production packets being lost or vice-versa
• Number of probes is many orders of magnitude lower than 

number of production packets
• It can miss low signal problems (bit flipping…)



TTLd: a mixed approach
• Every packet in the network is a probe
• 1 bit in the packet header identifies it as retransmitted
• Use end host marking to be precise
• Marked packets are undistinguishable for network 

devices, so they follow the same path



Where does loss come from?
• Network devices from a same “group” balance traffic hopefully 

equally according to ECMP hashing

• One device exposing more retransmit (in number or percent) 
than others may be dropping packets

• This also gives a view on congestion on devices not as per pure 
packets transmitted but with E2E performance view

• Neighboring device “groups” are seeing the impact of the bad device



Typical Network Fabric Design 



Typical Network Fabric Design 



Typical Network Fabric Design 



Typical Network Fabric Design 



Technical details



How to expose E2E performance?
• We need to find a bit in the TCP header that would be 
• easy to check
•would appear the same to all network devices
•would not change TCP behavior
•would not change the packet flow if set or unset



How to expose E2E performance?
• The winner is the Most Significant Bit (MSB) of TTL field 

(hop limit as we are all IPv6)



eBPF program
• Berkely Packet Filter has grown from filtering packets to 

tuning kernel handling of network events
• Promoted by Brendan Gregg (Netflix) and Alexei Starovoitov

(Facebook)

• Safe and efficient way to insert hooks in the kernel at 
runtime
ØCan be hooked in dedicated places (tc egress)
ØCan change the behaviour of kernel events (TCP retransmit)



• Use of eBPF to mark retransmitted packets with TTL of 
255
• Marking from TCP stack retransmit hook

• 1 bit in the IP header of any packet shows if it was 
retransmitted

E2E performance exposed
Marking MSB of TTL field (hop limit) via eBPF program



• We have a counter and bump it through ACL match 
(MSB of TTL)
• Best part is that as network devices have to decrement TTL 

of every packet, checking this bit is practically free!

• This is currently implemented on all Top Of Rack

E2E performance counting
Unsampled data through FBoss devices



• No sampling
• Precise view
• Aggregation at source is possible via host retransmit dataset
• Aggregation per destination rack now possible

Exposing E2E performance
Collect counters on FBoss



• Use collection framework (Facebook framework to collect 
counters from any proprietary network device) and ACL 
matching

• No sampling
• Aggregated per ECMP hashing of production traffic
• Exposes retransition on a specific device

Exposing E2E performance
Collect counters on other providers’ network devices



Visualization through internal tools



Visualization through internal tools



Visualization through internal tools



Visualization through internal tools




