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Background

A What do we refer to agraffic classificatiof?
I Identifying theapplicationthat generated eacliow

A What is traffic classification used for?
I Network planning and dimensioning
I Perapplication performance evaluation
| Traffic steering QoS/ SLA validation
I Charging and billing




Background: Ports

A Port-based
I Computationally lightweight
i Payloads not needed
I Easy to understand and program
I Low accuracy / completeness (but mb&ttFlowproducts still use it!)




Background: DPI

A Deep packet inspection (DPI)
I High accuracy and completeness
I Computationally expensive
I Needs payload access
I Privacy concerns
i Cannot work with encrypted traffic

TCP
Header GET /song.mp3 HTTP/1.1\r\nUser-Agent:
(Port 80)




Background: ML

A Machine Learning

High accuracy and completeness

i
I Computationally viable
:
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Payloads not needed

' Can work with encrypted traffic
" Needs frequent retraining
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Main limitations of ML-TC

A Introduction in real products and operational
environments isimitedandslow

I Current proposals suffer from practical problems
I Actual products rely on simpler methods or DPI

A 3 main realworld challenges:

1) -
2) -
3)

"hedeployment problem
nemaintenance problem

nevalidation problem



1) Deployment problem

A Current solutions ardifficult to deploy

I Need dedicated hardware appliances / probes
i Need packef S@St | O0OSaa oS®3

A How to address this
T Work wit
I Support

N flow level d

oroblem?
ata (e.d\etflow/ IPFIX)

packet samp

Ing (e.g. Samphekflow)




NetFlow w/0 sampling

A ChallengeNetFlowv5 features are very limited
I IPs, ports, protocol, TCP flags, duratiopktg> X

A Stateof-the-art ML technique: C4.5 decision tree




Results (NetFlow w/o0 sampling)

A UPC dataset: Real traffic from university access link
I 7 x 15 min traces (collected at different days / hours)
I Labelled with LAilter (strict version with less FPR)

I Public data set available at: | -
https:// cba.upc.edu/monitoring/traffieclassification

Overall accuracy
Name C4.5 Port-based®
Flows Packets Bytes Flows

UPC-I | 89.17% | 66.37% | 56.53% 11.05%
UPC-Il | 93.67% | 82.04% | 77.97% 11.68%
UPC-IIl | 90.77% | 67.78% | 61.80% 9.18%
UPC-IV | 91.12% | 72.58% | 63.69% 9.84%
UPC-V | 89.72% | 70.21% | 61.21% 6.49%
UPC-VI | 88.89% | 68.48% | 60.08% 16.98%
UPC-VII | 90.75% | 61.37% | 40.93% 3.55%
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Results (Sampled NetFlow)

A Impact of packet sampling
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sources of inaccuracy

1) Errorin the K
estimation of &

the traffic
features
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2) Changes in flow size distribution 3) Changes in flow splitting probability




Solution (Sampled NetFlow)
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V. CarelaEspanalP.BarletRosA.CabellosApariciq J.SoléPareta Analysis of the impact of sampling on
NetFlow traffic classification. Computer Networkss5(5),2011.




2) Maintenance problem

A Difficult to keep classification model updated
I Traffic changes, application updates, new applications
I Involve significant human intervention
I ML models need to be frequently retrained

A Possible solution to the problem
I Make retraining automatic
I Computationally viable
I Without human intervention




Autonomic Traffic Classification

A LightweightDPIfor retraining
I Smalltraffic sample (e.g. 1/10000 flow sampling)
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Results

A 14-days trace collected at th&nellaCientifica(Catalan
RREN) managed by CSW@\W.csuc.cak
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V. CarelaEspafaqlP.BarletRos O.Mula-Valls J.SolePareta Anautonomic traffic classification system for
network operation and management. Journal of Network and Systems Manageme8(3):401419, 2015.



http://www.csuc.cat/

3) Validation problem

A Current proposals are difficult tealidate,
compare andreproduce

I Private datasets
I Different groundtruth generators

A Our contribution
I Publication of labeled datasets (with payloads)
I Common benchmark to validate/compare/reproduce
I Validation of common grounttuth generators




Methodology

A Manually generate representative traffic

I Create fake accounts (e.g. Gmail, Facebook, Twitter)

I Interact with the service simulating human behavior
(e.g. postinggaming, watching video&, { € LIS O




Data set

A Publiclabeled data set withfull payloads
I Accurate: VBS (label from the application socket)
i Avoidsprivacy issues: Realisticc NI A F A OA I £
I Limitations: Traffic mix might not be representative

A Datasetis publicly available at:
I http://www.cba.upc.edu/monitoring/trafficclassification

I Sharedwith 200+ researchers over the world
I Cited in 100+ scientific articles (source: Google Schol:
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Data set

A > 750K flows, ~55 GB of data

A 17 application protocols

i5b{> 1¢¢t> {ac¢t> La!tsx
A 25 applications

I Bittorrent, Dropbox, Skype, Spotifyyo\We. X
A 34 web services

i Youtube Facebook, Twitter, LinkedlRbay. X

T.Bujlow V. CarelaEspaniqlP.BarletRos Independent comparison of popular DPI tools for traffic classification.
Computer Networks/6:7589,2015.

V. CarelaEspanalT. Bujlow P.BarletRos Is our ground-truth for traffic classification reliable? In Proc. oPassive
and Active Measurement Co(PAMN), 2014




DPI tools compared

Table 1: DPI tools included in our comparison

Name Version Released Apps. identified
PACE 1.47.2 November 2013 1000
OpenDPI 1.3.0 June 2011 100
nDPI rev. 7543 April 2014 170
L7-filter 2009.05.28  May 2009 110
Libprotoident ~ 2.0.7 November 2013 250
NBAR 15.2(4)M2  November 2012 85




Results: Application protocols

A Most tools achieve 709500% accuracy

A nDPlandLibprotoidentshowed highest
completeness (15/17)

A OnlyLibprotoidentidentified encrypted
protocols (e.g., IMAPLS, POP TLS, SMLB)

A L7-filter suffered from false positives (9/17)




Results: Applications

A 20-30% less accuracy compared to protocols

A PACE (20/22) amDPI(17/22) obtained highest
completeness

A Libprotoidentshowed reasonable acc. (14/22)
I Note it only uses 4 bytes of the payload

A NBAR showed very low performance (4/22)
I Unable to classify most applications




Results: Web services

A PACE: 16/34 (6 over 80%)
A nDP] 10/34 (6 over 80%)
A OpenDPI2/34

A Libprotoident 0/34

A L7filter: 0/44 (high FPR)
ANBAR: 0/34




Implications for operators

A Current DPproducts areexpensive and
difficult to deploy

A Accurate trafficclassification withSampled
NetFlowis possible andeasy to deploy

A Sampled\etFlowtraffic volumes are low
I Flows carbe easily sent (encrypted) to the cloud
I Monitoring can be offereds a service (SaaS)




Real Implementation

A Received funding from EU H2020 to convert
technology into a commercial product

I SME Instrument Phase 2 proje
I Grant agreement No. 726763

A Talaia Networks, S.lwww.talaia.io ﬂTaIaia

I Spinoff of UPC Barcelor&ech
I Monitoring and security service (SaaS aneposm)
i/ dzZa02YSNAR 02NI RGARS 0 2LIS



http://www.talaia.io/
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