# On the challenges of network traffic classification with NetFlow/IPFIX

#### Pere Barlet-Ros Associate Professor at UPC BarcelonaTech (pbarlet@ac.upc.edu)

Joint work with: Valentín Carela-Español, Tomasz Bujlow and Josep Solé-Pareta





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 726763.

# Background

- What do we refer to as *traffic classification*?
   Identifying the *application* that generated each *flow*
- What is traffic classification used for?
  - Network planning and dimensioning
  - Per-application performance evaluation
  - Traffic steering / QoS / SLA validation
  - Charging and billing

# Background: Ports

- Port-based
  - Computationally lightweight
  - Payloads not needed
  - Easy to understand and program
  - Low accuracy / completeness (but most NetFlow products still use it!)



# Background: DPI

- Deep packet inspection (DPI)
  - High accuracy and completeness
  - Computationally expensive
  - Needs payload access
  - Privacy concerns
  - Cannot work with encrypted traffic

| IP<br>Header | TCP<br>Header | GET /song.mp3 HTTP/1.1\r\nUser-Agent: |
|--------------|---------------|---------------------------------------|
|              | (Port 80)     |                                       |

| IP<br>HEADER | TCP<br>HEADER | GET/data?fid=************************************ |
|--------------|---------------|---------------------------------------------------|
|--------------|---------------|---------------------------------------------------|

# Background: ML

- Machine Learning
  - High accuracy and completeness
  - Computationally viable
  - Payloads not needed
  - Can work with encrypted traffic
  - Needs frequent retraining



# **Main limitations of ML-TC**

- Introduction in real products and operational environments is *limited* and *slow*
  - Current proposals suffer from practical problems
  - Actual products rely on simpler methods or DPI
- 3 main real-world challenges:
  - 1) The **deployment** problem
  - 2) The maintenance problem
  - 3) The validation problem

# 1) Deployment problem

- Current solutions are **difficult to deploy** 
  - Need dedicated hardware appliances / probes
  - Need packet-level access (e.g. compute features, ...)

- How to address this problem?
  - Work with flow level data (e.g. Netflow / IPFIX)
  - Support packet sampling (e.g. Sampled Netflow)

# **NetFlow w/o sampling**

- Challenge: NetFlow v5 features are very limited
   IPs, ports, protocol, TCP flags, duration, #pkts, ...
- State-of-the-art ML technique: C4.5 decision tree



# Results (NetFlow w/o sampling)

- UPC dataset: Real traffic from university access link
  - 7 x 15 min traces (collected at different days / hours)
  - Labelled with L7-filter (strict version with less FPR)
  - Public data set available at: <u>https://cba.upc.edu/monitoring/traffic-classification</u>

|         | Overall accuracy |                         |        |        |  |
|---------|------------------|-------------------------|--------|--------|--|
| Name    |                  | Port-based <sup>8</sup> |        |        |  |
|         | Flows            | Packets                 | Bytes  | Flows  |  |
| UPC-I   | 89.17%           | 66.37%                  | 56.53% | 11.05% |  |
| UPC-II  | 93.67%           | 82.04%                  | 77.97% | 11.68% |  |
| UPC-III | 90.77%           | 67.78%                  | 61.80% | 9.18%  |  |
| UPC-IV  | 91.12%           | 72.58%                  | 63.69% | 9.84%  |  |
| UPC-V   | 89.72%           | 70.21%                  | 61.21% | 6.49%  |  |
| UPC-VI  | 88.89%           | 68.48%                  | 60.08% | 16.98% |  |
| UPC-VII | 90.75%           | 61.37%                  | 40.93% | 3.55%  |  |

# **Results (Sampled NetFlow)**

Impact of packet sampling



## **Sources of inaccuracy**





2) Changes in flow size distribution

3) Changes in flow splitting probability

# Solution (Sampled NetFlow)



V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, J. Solé-Pareta. Analysis of the impact of sampling on NetFlow traffic classification. *Computer Networks*, 55(5), 2011.

# 2) Maintenance problem

- Difficult to keep classification model updated
  - Traffic changes, application updates, new applications
  - Involve significant human intervention
  - ML models need to be frequently retrained
- Possible solution to the problem
  - Make retraining automatic
  - Computationally viable
  - Without human intervention

# **Autonomic Traffic Classification**

- Lightweight DPI for retraining
  - Small traffic sample (e.g. 1/10000 flow sampling)



## Results

 14-days trace collected at the Anella Científica (Catalan RREN) managed by CSUC (<u>www.csuc.cat</u>)



V. Carela-Español, P. Barlet-Ros, O. Mula-Valls, J. Solé-Pareta. An autonomic traffic classification system for network operation and management. *Journal of Network and Systems Management*, 23(3):401-419, 2015.

# 3) Validation problem

- Current proposals are difficult to validate, compare and reproduce
  - Private datasets
  - Different ground-truth generators
- Our contribution
  - Publication of labeled datasets (with payloads)
  - Common benchmark to validate/compare/reproduce
  - Validation of common ground-truth generators

# Methodology



- Manually generate representative traffic
  - Create fake accounts (e.g. Gmail, Facebook, Twitter)
  - Interact with the service simulating human behavior (e.g. posting, gaming, watching videos, skype calls ...)

### Data set

- Public labeled data set with full payloads
  - Accurate: VBS (label from the application socket)
  - Avoids privacy issues: Realistic "artificial" traffic
  - Limitations: Traffic mix might not be representative
- Data set is publicly available at:
  - <u>http://www.cba.upc.edu/monitoring/traffic-classification</u>
  - Shared with 200+ researchers over the world
  - Cited in 100+ scientific articles (source: Google Scholar)

#### Data set

- > 750K flows, ~55 GB of data
- 17 application protocols
   DNS, HTTP, SMTP, IMAP, POP3, SSH, NTP, RTMP, ...
- 25 applications

- Bittorrent, Dropbox, Skype, Spotify, WoW, ...

• 34 web services

- Youtube, Facebook, Twitter, LinkedIn, Ebay, ...

T. Bujlow, V. Carela-Español, P. Barlet-Ros. Independent comparison of popular DPI tools for traffic classification. *Computer Networks*, 76:75-89, 2015.
V. Carela-Español, T. Bujlow, P. Barlet-Ros. Is our ground-truth for traffic classification reliable? In Proc. of *Passive and Active Measurement Conf.* (PAM), 2014.

## **DPI tools compared**

| Table 1: DPI tools included in our comparison |            |               |                  |  |  |  |  |
|-----------------------------------------------|------------|---------------|------------------|--|--|--|--|
| Name                                          | Version    | Released      | Apps. identified |  |  |  |  |
| PACE                                          | 1.47.2     | November 2013 | 1000             |  |  |  |  |
| OpenDPI                                       | 1.3.0      | June 2011     | 100              |  |  |  |  |
| nDPI                                          | rev. 7543  | April 2014    | 170              |  |  |  |  |
| L7-filter                                     | 2009.05.28 | May 2009      | 110              |  |  |  |  |
| Libprotoident                                 | 2.0.7      | November 2013 | 250              |  |  |  |  |
| NBAR                                          | 15.2(4)M2  | November 2012 | 85               |  |  |  |  |

# **Results: Application protocols**

- Most tools achieve 70%-100% accuracy
- nDPI and Libprotoident showed highest completeness (15/17)
- Only Libprotoident identified encrypted protocols (e.g., IMAP TLS, POP TLS, SMTP TLS)
- L7-filter suffered from false positives (9/17)

# **Results: Applications**

- 20-30% less accuracy compared to protocols
- PACE (20/22) and nDPI (17/22) obtained highest completeness
- Libprotoident showed reasonable acc. (14/22)
   Note it only uses 4 bytes of the payload
- NBAR showed very low performance (4/22)
   Unable to classify most applications

## **Results: Web services**

- PACE: 16/34 (6 over 80%)
- nDPI: 10/34 (6 over 80%)
- OpenDPI: 2/34
- Libprotoident: 0/34
- L7-filter: 0/44 (high FPR)
- NBAR: 0/34

# **Implications for operators**

- Current DPI products are expensive and difficult to deploy
- Accurate traffic classification with Sampled NetFlow is possible and easy to deploy
- Sampled NetFlow traffic volumes are low

   Flows can be easily sent (encrypted) to the cloud
   Monitoring can be offered as a service (SaaS)

#### 25

# **Real implementation**

- Received funding from EU H2020 to convert technology into a commercial product
  - SME Instrument Phase 2 project
  - Grant agreement No. 726763
  - Talaia Networks, S.L. (<u>www.talaia.io</u>)
    - Spin-off of UPC Barcelona-Tech
    - Monitoring and security service (SaaS and on-prem)
    - Customers worldwide (operators, ISPs, cloud prov., ...)





#### **On-Line Demo**



#### https://www.talaia.io