

IPv6 Security Course Preview

RIPE 76

Alvaro Vives - Marseille - 14 May 2018

(NDP, MLD)

IPv6 Security Myths

Basic IPv6 Protocol Security

(Extension Headers, Addressing)

IPv6 Associated Protocols Security

Learning/ understanding

Attacker

Protecting

Reason:

RFC 4294 - IPv6 Node Requirements: IPsec MUST

- RFC 6434 IPv6 Node Requirements: IPsec SHOULD
- IPSec available. Used for security in IPv6 protocols

• I'm exposed to attacks from Internet

Reason:

End-2-End paradigm. Global addresses. No NAT

- Global addressing does not imply global reachability
- You are responsible for reachability (filtering)

Reason:

- Common LAN/VLAN use /64 network prefix
- 18,446,744,073,709,551,616 hosts

- Brute force scanning is not possible [RFC5157]
- New scanning techniques

Reason:

Lack of knowledge about IPv6 (it's happening!)

- There are tools, threats, attacks, security patches, etc.
- You have to be prepared for IPv6 attacks

• There is nothing new

Reason:

Routing and switching work the same way

- Whole new addressing architecture
- Many associated new protocols

Features missing, immature implementations, interoperability issues

10

Q: "Does it support IPv6?"

A: "Yes, it supports IPv6"

Reason:

Reality:

2 6 7 3 4 5 8 1 It supports IPv6

IPv6 Security Myths

IPv6 Security Myths 1 2 3 4 5 6 7 8 My network is IPv4 only IPv6 is not a security problem

Reason:

Networks only designed and configured for IPv4

- IPv6 available in many hosts, servers, and devices
- Unwanted IPv6 traffic. Protect your network.

Lack of resources and features

Reason:

- Considering IPv6 completely different than IPv4
- Think there are no BCPs, resources or features

- Use IP independent security policies
- There are BCPs, resources and features

A change of mindset is necessary

IPv6 is not more or less secure than IPv4

Knowledge of the protocol is the best security measure

Basic IPv6 Protocol Security

IPv6 Extension Headers

IPv6 Extension Headers (1)

- Fixed: Types and order
- Flexible use
- Processed only at endpoints
 - Exceptions: Hop-by-hop (and Routing)
- Only appear once
 - **Exception:** Destination Options

- * Options for IPs in routing header
- ** Options for destination IP

Alvaro Vives | RIPE 76 | 14th May 2018

IPv6 Extension Headers (2)

• Flexibility means complexity for security

 Security devices/software should be able to process the full chain of headers

- Firewalls:
 - Must deal with standard EHs
 - Able to filter based on EH

Extension Headers Threats (1)

- Routing Header (Type 0): RH0 can be used for traffic amplification over a remote path
- RH0 Deprecated [RFC 5095]
 - RH1 deprecated, RH2 (MIPv6) & RH3 (RPL) still valid

Extension Headers Threats (3)

- Trying to bypass security mechanisms
 - Example: fooling RA filtering (RA-Guard)
- Any EH

Extension Headers Solutions

 Require security tools to inspect Header Chain properly

Alvaro Vives | RIPE 76 | 14th May 2018

IPv6 Addressing Architecture

Introduction

340,282,366,920,938,463,463,374,607,431,768,211,456

IPv6 Network Scanning (1)

- Network Prefix determination (64 bits)
 - Common patterns in addressing plans
 - DNS direct and reverse resolution
 - Traceroute

- IID determination (64 bits)
 - "brute force" no longer possible

IPv6 Network Scanning (2)

- IID generated by the node (* except DHCPv6)
- Consider IID bits "opaque", no value or meaning [RFC7136]
 - How to generate [RFC7217]
 - This method is widely used and standardised [RFC8064]

IPv6 Network Scanning (3)

Security Tips

- Use hard to guess IIDs
 - RFC 7217 better than EUI-64
 - RFC 8064 establishes RFC 7217 as the default
- Use IPS/IDS to detect scanning
- Filter packets where appropriate
- Use "default" /64 size IPv6 subnet prefix

IPv6 Associated Protocols Security

NDP

Introduction (1)

Introduction (2)

• Hop Limit = 255, if not, discard

- NDP has vulnerabilities
 - [RFC3756] [RFC6583]

NDP specification: use IPsec -> impractical, not used

- SEND (SEcure Neighbour Discovery): Not widely available
 - [RFC3971]

NDP Threats (2)

Unsolicited NA: Redirection / DoS

NDP Threats (3)

DAD DoS Attack

NDP Threats (4)

Malicious Last Hop Router

NDP Threats (5)

Bogus Address Configuration Prefix

- Attacker sends RA with prefix for SLAAC
- Hosts using SLAAC will auto-configure an address using that prefix

• Return packets never reach the host

DoS attack

NDP Threats (6)

Spoofed Redirect Message

NDP Threats (7)

First Hop Security (1)

Security implemented on switches

- There is a number of techniques available:
 - RA-GUARD
 - DHCPv6 Guard
 - IPv6 Snooping (ND inspection + DHCPv6 Snooping)
 - IPv6 Source/Prefix Guard
 - IPv6 Destination Guard (or ND Resolution rate limiter)
 - MLD Snooping

First Hop Security (2)

IPv6 Source/ Prefix Guard

Alvaro Vives | RIPE 76 | 14th May 2018

RA-GUARD

- RA-GUARD [RFC6105] easiest and available solution
- Only allows RAs on legitimate port(s) on L2 switches

- Requires support on switches
- EHs were used to go through RA-Guard [RFC7113]

Conclusions / Tips

• NDP is an important, powerful and vulnerable protocol

Some solutions are available to protect NDP

- Recommended: use available ones
 - Check availability and configure them

Detection (IDS/IPS) could be easier and recommended

Multicast Listener Discovery (MLD)

Introduction

- Multicast Listener Discovery (MLD) is:
 - Multicast related protocol, used in the local link
 - Two versions: MLDv1 and MLDv2
 - Uses ICMPv6
 - Required by NDP and "IPv6 Node Requirements"

• IPv6 nodes use it when joining a multicast group

Mandatory for all IPv6 nodes (MUST)

MLDv2

- Strongly recommended for all IPv6 hosts (SHOULD)
- Interoperable with MLDv1
- Adds Source-Specific Multicast filters:
 - Only accepted sources; or
 - All sources accepted except specified ones

MLD Threats (1)

- Flooding of MLD messages Solutions
 Lots of REPORTs
 CPU Exhaustion
 Disable MLD (if not needed)
- Traffic Amplification

MLD Threats (2)

Network scanning

MLD Solutions (1)

MLD built-in security

Link-local source address Hop Limit = 1

Router Alert option in Hop-by-Hop EH

Discard non compliant messages

MLD Snooping [RFC4541]

Switch listens to REPORTs

MLD Table: maps multicast groups to ports that requested

Only allow multicast traffic on ports with listeners

MLD Solutions (2)

- Only allow QUERIES on router's port
 - Kind of MLD-Guard

- Protecting routers
 - Rate limit REPORTs from each host
 - Disable multicast/MLD functionality if not using inter-domain multicast routing

IPv6 Security Tips

Introduction

- Best security tool is knowledge
- IPv6 security is a moving target, keep updated

• IPv6 is happening: need to know about IPv6 security

• IPv6 quite similar to IPv4, many reusable practices

Overview: Devices

Different categories (from RIPE-554):

Overview: Network Example

Alvaro Vives | RIPE 76 | 14th May 2018

RIPE NCC Academy

Graduate to the next level!

http://academy.ripe.net

@TrainingRIPENCC

Questions

