
Is large-scale DNS over TCP practical?

Baptiste Jonglez
PhD student, Univ. Grenoble Alpes, France

14-18 May 2018
RIPE 76

1/24



DNS over UDP

Issues with DNS over UDP

Well-known issues:

I no source address validation: huge DDoS attacks by
re�ection/ampli�cation

I requires IP fragmentation for large messages (DNSSEC)

I no privacy

I unreliable transport

Each individual issue can be worked-around: RRL, Ed25519 for
DNSSEC, DTLS or DNSCurve for privacy. . .

Solution to all four problems: TCP+TLS (see DPRIVE, RFC 7858)

2/24



Switch to DNS over TCP by default?

Scenario

Use persistent TCP connections between home routers and
recursive resolvers, for all customers of an ISP.

3/24



Switch to DNS over TCP by default?

Why is this situation useful to study?

I The resolver could stop supporting UDP queries (no re�ection
attacks possible!)

I First step towards TCP+TLS for privacy

I Using persistent TCP connections can improve responsiveness
on lossy networks (not shown here)

4/24



Switch to DNS over TCP by default?

Objection

�But wait, our recursive resolvers won't handle that much load!�

Goals: performance analysis

I Develop a methodology to measure resolver performance

I Experiment with lots of clients (millions) to assess whether a
recursive resolver can handle that much TCP connections

I See if resolver performance depends on the number of clients
5/24



Challenges

Why would performance depend on the number of clients?

I performance of select-like event noti�cation facilities
(bitmap of �le descriptors, linear search)

I the kernel has to manage millions of timers (retransmission on
each TCP connection)

I memory usage, CPU cache

6/24



Experimental challenges

Practical challenges

I How to spawn millions of DNS clients?

I Realistic query generator?

Solution

I Use Grid'5000: a �Hardware-as-a-Service� research platform,
with lots of powerful servers: 32 cores, 128 GB RAM, 10G
NICs;

I One dedicated server for unbound on Linux, everything served
from cache;

I Lots of Virtual Machines acting as clients;

I On each VM, open 30k persistent TCP connections towards
the server and send DNS queries with custom client in C with
libevent;

7/24



Experimental setup: high-level

8/24



Methodology: how to measure performance?

70620

0

50

100

0 10 20 30 40 50

Time (seconds)

Q
ue

ry
 r

at
e 

(b
la

ck
) 

/ a
ns

w
er

 r
at

e 
(r

ed
) 

in
 k

Q
P

S

20180502_lille−chetemi−1thread−24VM_1000tcp_1500qps_qps−increase−85−50s

9/24



Methodology: how to measure performance?

113750

0

50

100

0 10 20 30 40

Time (seconds)

Q
ue

ry
 r

at
e 

(b
la

ck
) 

/ a
ns

w
er

 r
at

e 
(r

ed
) 

in
 k

Q
P

S

20180502_lille−chetemi−1thread−24VM_175tcp_1500qps_qps−increase−95−45s

10/24



UDP/TCP comparison

●

●

●

●

●
●

●

●
●

●

●
● ● ●

0

100

200

300

0 5000 10000 15000 20000 25000

Number of TCP or UDP connections

P
ea

k 
se

rv
er

 p
er

fo
rm

an
ce

 (
K

qp
s)

mode
● tcp

udp

11/24



UDP/TCP comparison
Interpretation

Resolver performance analysis

I settings: unbound runs on 1 thread

I UDP performance does not really depend on the number of
clients, as expected (stateless)

I performance over TCP is good with very few clients, but then
drops rapidly

I it then reaches a plateau: stable 50k to 60k qps even for 6.5
million TCP clients!

Hypotheses for performance drop

I more clients → lower query rate per client, so less potential for
aggregation (in TCP, select(), . . . )

I TCP data structures may not �t anymore in CPU cache?

12/24



Large-scale experiment

Result

Experimented with up to 6.5 million TCP clients:

I required 216 client VM running on 18 physical machines

I each VM opened 30k TCP connections to resolver

I server had 128 GB of RAM, peak usage: 51.4 GB (kernel +
unbound)

I server performance: around 50k queries per second

Memory usage breakdown per connection: 4 KB for unbound
bu�er, 3.7 KB for the rest (unbound, libevent, kernel)

13/24



What about client query delay?
Medium-high load: 43 kQPS from 4.3M TCP clients

14/24



What about client query delay?
Increasing to overload, 360k TCP clients

15/24



What about multi-threading?

●

●

●

●

●

200

400

600

800

0 5 10 15 20

Resolver threads

P
ea

k 
re

so
lv

er
 p

er
fo

rm
an

ce
 (

kQ
P

S
)

Impact of resolver threads on peak performance (300 TCP/VM, 48 VM, dual 10−core server)

16/24



Assumptions and outlooks

Some assumptions we made

I everything was served from static zone in unbound (= cache)

I we currently open all TCP connections beforehand → cost of
client churn? what about TLS?

I client queries modelled as Poisson processes → any better
model?

I could we somehow experiment with constant query rate per
client?

17/24



Setup

Detailed setup

I Linux 4.9 (Debian stretch)

I Unbound 1.6.7, with 4 KB of bu�er per TCP connection, and
no disconnection timeout

I custom libevent-based client:
https://github.com/jonglezb/tcpscaler

I experiment orchestration:
https://github.com/jonglezb/dns-server-experiment

I Grid'5000: https://www.grid5000.fr

I Hardware details (mostly used Chetemi, Chi�et, Grisou):
https:

//www.grid5000.fr/mediawiki/index.php/Hardware

18/24

https://github.com/jonglezb/tcpscaler
https://github.com/jonglezb/dns-server-experiment
https://www.grid5000.fr
https://www.grid5000.fr/mediawiki/index.php/Hardware
https://www.grid5000.fr/mediawiki/index.php/Hardware


Conclusions

DNS-over-TCP is feasible on a large scale

I with 6 million TCP clients, unbound can still handle around
50k queries per second per CPU core

I apparently unlimited number of TCP clients (requires OS
tweaking and enough RAM)

Remaining work

I better understanding of the server performance drop

I measure impact of client churn

I performance when not serving from DNS cache?

I apply methodology to more recursive resolver software

I experiment with TLS, QUIC, SCTP

19/24



Bonus slides

20/24



Aside: unreliable transport?

Queries or responses can be lost.

Retransmission timeout

Large retransmission timeout when a DNS query is lost!

Retransmission timeouts in stub resolvers:

I Linux/glibc: 5 seconds, con�gurable down to 1 second

I Android/bionic: identical (but there is a local cache)

I Windows: 1 second (since Vista)

21/24



Why not just lower retransmission timeouts?

22/24



Experimental setup, details

23/24



Experimental setup, more details

Setup

I all queries are answered directly by unbound (100% cache hit)

I unbound was modi�ed to allow in�nite connections (very large
timeout)

I everything scripted with execo, fully reproducible:
https://github.com/jonglezb/dns-server-experiment

https://github.com/jonglezb/tcpscaler

Gotcha

I generating queries according to a fast Poisson process is tricky!

I epoll() has very low timeout resolution compared to poll()

or select(). . .

I Linux has several limits regarding the number of �le
descriptors, but they can all be con�gured at runtime (thanks
Google. . . )

24/24

https://github.com/jonglezb/dns-server-experiment
https://github.com/jonglezb/tcpscaler

